Solution of Nonlinear Obstacle Problems by Complementarity Algorithms

نویسندگان

  • Luis Fernandes
  • Isabel Figueiredo
  • Joaquim Júdice
چکیده

We discuss a nonlinear beam obstacle model defined by inequality constraints and differential equations with highly nonlinear and fourth order operators. An appropriate discrete approximation by the finite element method leads to a large finite-dimensional mixed nonlinear complementarity problem. We propose an interior-point algorithm for the solution of this complementarity problem. Some computational experience with this algorithm on the solution of the beam model is included to highlight the efficiency of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Mathematical Programs with Equilibrium Constraints: A Smooth Algorithm and Applications to Contact Problems

We discuss a special mathematical programming problem with equilibrium constraints (MPEC), that arises in material and shape optimization problems involving the contact of a rod or a plate with a rigid obstacle. This MPEC can be reduced to a nonlinear programming problem with independent variables and some dependent variables implicity defined by the solution of a mixed linear complementarity p...

متن کامل

A Projected Algebraic Multigrid Method for Linear Complementarity Problems

We present an algebraic version of an iterative multigrid method for obstacle problems, called projected algebraic multigrid (PAMG) here. We show that classical algebraic multigrid algorithms can easily be extended to deal with this kind of problem. This paves the way for efficient multigrid solution of obstacle problems with partial differential equations arising, for example, in financial eng...

متن کامل

Parallel Two-Grid Semismooth Newton-Krylov-Schwarz Method for Nonlinear Complementarity Problems

We develop scalable parallel domain decomposition algorithms for nonlinear complementarity problems including, for example, obstacle problems and free boundary value problems. Semismooth Newton is a popular approach for such problems, however, the method is not suitable for large scale calculations because the number of Newton iterations is not scalable with respect to the grid size; i.e., when...

متن کامل

Verification of Solutions for Almost Linear Complementarity Problems

The paper establishes a computational enclosure of the solution of a nonlinear complementarity problem x ≥ 0, l(x) ≥ 0, x l(x) = 0, where l(x) = Mx+ Φ(x) is a so-called almost linear mapping with an H-matrix M with positive diagonal elements and an increasing diagonal mapping Φ. The procedure also delivers a simple proof for the uniqueness of the solution. Mathematics Subject Classification (20...

متن کامل

A Theoretical and Numerical Comparison of Some Semismooth Algorithms for Complementarity Problems

In this paper we introduce a general line search scheme which easily allows us to de ne and analyze known and new semismooth algorithms for the solution of nonlinear complementarity problems. We enucleate the basic assumptions that a search direction to be used in the general scheme has to enjoy in order to guarantee global convergence, local superlinear/quadratic convergence or nite convergenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999